You are viewing the page for Feb. 8, 2016
  Select another date:
<<back forward>>
SpaceWeather.com -- News and information about meteor showers, solar flares, auroras, and near-Earth asteroids
 
Solar wind
speed: 382.4 km/sec
density: 10.2 protons/cm3
explanation | more data
Updated: Today at 2352 UT
X-ray Solar Flares
6-hr max: B4
2035 UT Feb08
24-hr: C1
0529 UT Feb08
explanation | more data
Updated: Today at: 2300 UT
Daily Sun: 08 Feb 16
AR2494 has a 'beta-delta' magnetic field that poses a slight threat for M-class solar flares. Credit: SDO/HMI

Sunspot number: 84
What is the sunspot number?
Updated 08 Feb 2016

Spotless Days
Current Stretch: 0 days
2016 total: 0 days (0%)
2015 total: 0 days (0%)

2014 total: 1 day (<1%)
2013 total: 0 days (0%)
2012 total: 0 days (0%)
2011 total: 2 days (<1%)
2010 total: 51 days (14%)
2009 total: 260 days (71%)

Updated 08 Feb 2016


The Radio Sun
10.7 cm flux: 117 sfu
explanation | more data
Updated 08 Feb 2016

Current Auroral Oval:
Switch to: Europe, USA, New Zealand, Antarctica
Credit: NOAA/Ovation
Planetary K-index
Now: Kp= 1 quiet
24-hr max: Kp= 5
storm
explanation | more data
Interplanetary Mag. Field
Btotal: 9.9 nT
Bz: 3.5 nT north
explanation | more data
Updated: Today at 2352 UT
Coronal Holes: 08 Feb 16

There are no large coronal holes on the Earthside of the sun. Credit: SDO/AIA.
Noctilucent Clouds The southern season for noctilucent clouds began on Dec. 13, 2015. The coverage of NLCs over Antarctica is rapidly multiplying in 2016.
Switch view: Ross Ice Shelf, Antarctic Peninsula, East Antarctica, Polar
Updated at: 02-08-2016 20:55:02
SPACE WEATHER
NOAA Forecasts
Updated at: 2016 Feb 08 2200 UTC
FLARE
0-24 hr
24-48 hr
CLASS M
10 %
10 %
CLASS X
01 %
01 %
Geomagnetic Storms:
Probabilities for significant disturbances in Earth's magnetic field are given for three activity levels: active, minor storm, severe storm
Updated at: 2016 Feb 08 2200 UTC
Mid-latitudes
0-24 hr
24-48 hr
ACTIVE
30 %
15 %
MINOR
10 %
05 %
SEVERE
01 %
01 %
High latitudes
0-24 hr
24-48 hr
ACTIVE
15 %
20 %
MINOR
30 %
30 %
SEVERE
40 %
20 %
 
Monday, Feb. 8, 2016
What's up in space
 

Marianne's Heaven On Earth Aurora Chaser Tours Chasethelighttours.co.uk invites you to join them in their quest to find and photograph the Aurora Borealis. Experience the winter wonderland in the Tromsø Area.

 
Chase the Light Tours

HAPPY NEW YEAR: Today, Feb 8th, the Moon is new. According to the traditional Chinese lunisolar calendar, this marks the beginning of a new year--the "Year of the Monkey." A 15-day celebration is underway in China, ending later this month when the Moon becomes full. Happy Chinese New Year!

GEOMAGNETIC STORM: Solar activity is low. Nevertheless, auroras are dancing around the Arctic Circle. Øystein Lunde Ingvaldsen of Bø in Vesterålen photographed a "north Norwegian snowman family enjoying the show on Feb. 7th:

Shortly after this photo was taken, Earth crossed through a fold in the heliospheric current sheet, sparking a G1-class geomagnetic storm. This energized the lights even more.

More auroras are in the offing--especially on Feb. 9th when a minor CME is expected to deliver a glancing blow to Earth's magnetic field. NOAA forecasters say there is a 40% chance of polar geomagnetic storms when the CME arrives. Aurora alerts: text or voice

Realtime Aurora Photo Gallery

COSMIC RAYS CONTINUE TO INTENSIFY: Last month, we reported that cosmic rays are intensifying. Measurements so far in February indicate that the trend is continuing. In fact, the latest balloon flight over California on Feb. 5th detected the highest value yet:

The data show that cosmic rays in the mid-latitude stratosphere now are approximately 10% stronger than they were one year ago. All of these measurements were collected by Spaceweather.com and the students of Earth to Sky Calculus.

Cosmic rays, which are accelerated toward Earth by distant supernova explosions and other violent events, are an important form of space weather. They can seed clouds, trigger lightning, and penetrate commercial airplanes. Indeed, our measurements show that someone flying back and forth across the continental USA, just once, can absorb as much ionizing cosmic radiation as 2 to 5 dental X-rays. Likewise, cosmic rays can affect mountain climbers, high-altitude drones, and astronauts onboard the International Space Station.

This type of radiation is modulated by solar activity. Solar storms and CMEs tend to sweep aside cosmic rays, making it more difficult for cosmic rays to reach Earth. On the other hand, low solar activity allows an extra dose of cosmic rays to reach our planet. Indeed, the ongoing increase in cosmic ray intensity is probably due to a decline in the solar cycle. Solar Maximum has passed and we are heading toward a new Solar Minimum. Forecasters expect solar activity to drop sharply in the years ahead, and cosmic rays are poised to increase accordingly. Stay tuned for more radiation.

Realtime Spaceweather Photo Gallery


Realtime Comet Photo Gallery

  All Sky Fireball Network
Every night, a network of NASA all-sky cameras scans the skies above the United States for meteoritic fireballs. Automated software maintained by NASA's Meteoroid Environment Office calculates their orbits, velocity, penetration depth in Earth's atmosphere and many other characteristics. Daily results are presented here on Spaceweather.com.

On Feb. 8, 2016, the network reported 7 fireballs.
(7 sporadics)

In this diagram of the inner solar system, all of the fireball orbits intersect at a single point--Earth. The orbits are color-coded by velocity, from slow (red) to fast (blue). [Larger image] [movies]

  Near Earth Asteroids
Potentially Hazardous Asteroids (PHAs) are space rocks larger than approximately 100m that can come closer to Earth than 0.05 AU. None of the known PHAs is on a collision course with our planet, although astronomers are finding new ones all the time.
On February 8, 2016 there were 1672 potentially hazardous asteroids.
Recent & Upcoming Earth-asteroid encounters:
Asteroid
Date(UT)
Miss Distance
Size
2016 BE
Feb 1
5.9 LD
86 m
2016 BA15
Feb 1
2.9 LD
19 m
2015 XA379
Feb 7
8.1 LD
38 m
2016 BQ
Feb 7
11.1 LD
21 m
2014 QD364
Feb 7
14 LD
16 m
2013 VA10
Feb 8
12.5 LD
165 m
2016 BQ15
Feb 8
8.5 LD
44 m
2014 EK24
Feb 14
13.8 LD
94 m
2010 LJ14
Feb 16
68.5 LD
1.2 km
1999 YK5
Feb 19
51.7 LD
2.0 km
2010 WD1
Feb 22
12.3 LD
22 m
1991 CS
Feb 23
65.5 LD
1.4 km
2011 EH17
Mar 1
11.1 LD
52 m
2013 TX68
Mar 5
0.044 LD
30 m
2001 PL9
Mar 9
77.6 LD
1.2 km
2010 FX9
Mar 19
6.9 LD
62 m
252P/LINEAR
Mar 21
13.9 LD
0 m
2016 BA14
Mar 22
9.2 LD
540 m
1993 VA
Mar 23
59.6 LD
1.6 km
2001 XD
Mar 28
64.5 LD
1.0 km
2016 BC14
Mar 29
9.9 LD
280 m
2002 AJ29
Apr 6
55.2 LD
1.5 km
2002 EB3
Apr 8
55.6 LD
1.2 km
Notes: LD means "Lunar Distance." 1 LD = 384,401 km, the distance between Earth and the Moon. 1 LD also equals 0.00256 AU. MAG is the visual magnitude of the asteroid on the date of closest approach.
  Cosmic Rays in the Atmosphere
Situation Report -- Oct. 30, 2015 Stratospheric Radiation (+37o N)
Cosmic ray levels are elevated (+6.1% above the Space Age median). The trend is flat. Cosmic ray levels have increased +0% in the past month.
Sept. 06: 4.14 uSv/hr (414 uRad/hr)
Sept. 12: 4.09 uSv/hr (409 uRad/hr)
Sept. 23: 4.12 uSv/hr (412 uRad/hr)
Sept. 25: 4.16 uSv/hr (416 uRad/hr)
Sept. 27: 4.13 uSv/hr (413 uRad/hr)
Oct. 11: 4.02 uSv/hr (402 uRad/hr)
Oct. 22: 4.11 uSv/hr (411 uRad/hr)
These measurements are based on regular space weather balloon flights: learn more.

Approximately once a week, Spaceweather.com and the students of Earth to Sky Calculus fly "space weather balloons" to the stratosphere over California. These balloons are equipped with radiation sensors that detect cosmic rays, a surprisingly "down to Earth" form of space weather. Cosmic rays can seed clouds, trigger lightning, and penetrate commercial airplanes. Our measurements show that someone flying back and forth across the continental USA, just once, can absorb as much ionizing radiation as 2 to 5 dental X-rays. For example, here is the data from a flight on Oct. 22, 2015:

Radiation levels peak at the entrance to the stratosphere in a broad region called the "Pfotzer Maximum." This peak is named after physicist George Pfotzer who discovered it using balloons and Geiger tubes in the 1930s. Radiation levels there are more than 80x sea level.

Note that the bottom of the Pfotzer Maximim is near 55,000 ft. This means that some high-flying aircraft are not far from the zone of maximum radiation. Indeed, according to the Oct 22th measurements, a plane flying at 45,000 feet is exposed to 2.79 uSv/hr. At that rate, a passenger would absorb about one dental X-ray's worth of radiation in about 5 hours.

The radiation sensors onboard our helium balloons detect X-rays and gamma-rays in the energy range 10 keV to 20 MeV. These energies span the range of medical X-ray machines and airport security scanners.

  Essential web links
NOAA Space Weather Prediction Center
  The official U.S. government space weather bureau
Atmospheric Optics
  The first place to look for information about sundogs, pillars, rainbows and related phenomena.
Solar Dynamics Observatory
  Researchers call it a "Hubble for the sun." SDO is the most advanced solar observatory ever.
STEREO
  3D views of the sun from NASA's Solar and Terrestrial Relations Observatory
Solar and Heliospheric Observatory
  Realtime and archival images of the Sun from SOHO.
Daily Sunspot Summaries
  from the NOAA Space Environment Center
Heliophysics
  the underlying science of space weather
IQ Option trading: Find the best binary options brokers and signals from binaryoptionrobotinfo.com
  sponsored link
Kotton Grammer, Search Engine Marketing
  sponsored link
Synergy Spray Foam Insulation of Houston TX
  Protection from the Sun!
  more links...
©2016 Spaceweather.com. All rights reserved. This site is penned daily by Dr. Tony Phillips.
©2019 Spaceweather.com. All rights reserved.