You are viewing the page for Jan. 6, 2016
  Select another date:
<<back forward>>
SpaceWeather.com -- News and information about meteor showers, solar flares, auroras, and near-Earth asteroids
 
Solar wind
speed: 553.8 km/sec
density: 1.7 protons/cm3
explanation | more data
Updated: Today at 2350 UT
X-ray Solar Flares
6-hr max: B7
2200 UT Jan06
24-hr: C1
1137 UT Jan06
explanation | more data
Updated: Today at: 2300 UT
Daily Sun: 06 Jan 16
None of these sunspots poses a threat for strong flares. Solar activity is low. Credit: SDO/HMI

Sunspot number: 29
What is the sunspot number?
Updated 06 Jan 2016

Spotless Days
Current Stretch: 0 days
2016 total: 0 days (0%)
2015 total: 0 days (0%)

2014 total: 1 day (<1%)
2013 total: 0 days (0%)
2012 total: 0 days (0%)
2011 total: 2 days (<1%)
2010 total: 51 days (14%)
2009 total: 260 days (71%)

Updated 06 Jan 2016


The Radio Sun
10.7 cm flux: 95 sfu
explanation | more data
Updated 06 Jan 2016

Current Auroral Oval:
Switch to: Europe, USA, New Zealand, Antarctica
Credit: NOAA/Ovation
Planetary K-index
Now: Kp= 3 quiet
24-hr max: Kp= 5
storm
explanation | more data
Interplanetary Mag. Field
Btotal: 8.2 nT
Bz: 0.2 nT south
explanation | more data
Updated: Today at 2350 UT
Coronal Holes: 06 Jan 16

Earth is inside a stream of solar wind flowing from the indicated coronal hole. Credit: SDO/AIA.
Noctilucent Clouds The southern season for noctilucent clouds began on Dec. 13, 2015. The coverage of NLCs over Antarctica is rapidly multiplying as 2016 approaches.
Switch view: Ross Ice Shelf, Antarctic Peninsula, East Antarctica, Polar
Updated at: 01-06-2016 19:55:02
SPACE WEATHER
NOAA Forecasts
Updated at: 2016 Jan 06 2200 UTC
FLARE
0-24 hr
24-48 hr
CLASS M
01 %
01 %
CLASS X
01 %
01 %
Geomagnetic Storms:
Probabilities for significant disturbances in Earth's magnetic field are given for three activity levels: active, minor storm, severe storm
Updated at: 2016 Jan 06 2200 UTC
Mid-latitudes
0-24 hr
24-48 hr
ACTIVE
30 %
15 %
MINOR
10 %
05 %
SEVERE
01 %
01 %
High latitudes
0-24 hr
24-48 hr
ACTIVE
15 %
15 %
MINOR
30 %
25 %
SEVERE
40 %
25 %
 
Wednesday, Jan. 6, 2016
What's up in space
 

Marianne's Heaven On Earth Aurora Chaser Tours Chasethelighttours.co.uk invites you to join them in their quest to find and photograph the Aurora Borealis. Experience the winter wonderland in the Tromsø Area.

 
Chase the Light Tours

CHANCE OF STORMS: NOAA forecasters estimate a 60% chance of minor G1-class geomagnetic storms today as Earth passes through a stream of high-speed solar wind. Arctic sky watchers should be alert for auroras. Aurora alerts: text or voice

DIAMOND DUST ICE HALOS: As winter deepens in the northern hemisphere, the Arctic atmosphere is filling with crystals of ice. This is producing some beautiful ice halos. They form not only around the sun during the day, but also around headlights at night. Pekka Lähteenmäki photographed samples of both in Jalasjärvi, Finland:

These luminous shapes are caused by light shining through jewel-like crystals called "diamond dust.' Lähteenmäki notes that "You can see individual ice crystals glinting in my photos--especially the night shot."

Atmospheric optics expert Les Cowley has seen halos like these before. He finds the night halos most interesting: "Artificial light halos can have strange forms compared with those made by the sun or moon. The difference is because, unlike sun rays, those from nearby lights are not parallel. The equivalents of sundogs become long streaks. There are even super sundogs. The trumpet-shaped night halo Lähteenmäki photographed was made by hexagonal column crystals floating nearby with their long axes horizontal.  It is a cousin of the familiar upper tangent arc--similar, but not the same. Look out at night for a whole new world of halos!"

Realtime Spaceweather Photo Gallery

QUADRANTID METEOR BALLOON: When the annual Quadrantid meteor shower peaked on Jan. 4th, the skies of Spain were cloudy, and rain was falling on astronomers at the Universidad Complutense de Madrid (UCM). Determined to see the shower no matter what, they launched a helium balloon to the stratosphere where the sky was clear. "For the first time ever," reports UCM astronomy postdoc Alejandro Sánchez de Miguel, "we have photographed Quadrantid meteors from the stratosphere--in color and HD." Their video captured as many as half-a-dozen Quadrantids:

The Quadrantids are notoriously difficult to photograph. The meteors are typically faint; moreover, the shower peaks in early January when winter weather often blocks the view of northern skies. The UCM group's successful capture of Quadrantids high above the clouds is a significant accomplishment.

According to Sánchez, there are three good reasons to observe meteor showers using balloons:

"First, the stratosphere is a place where we can avoid bad weather. Lately we have been having terrible weather in Spain!"

"Second, the stratosphere is so transparent. That means we can point our cameras at the horizon and sample a large volume of atmosphere, and capture the maximum number of meteors."

"Third, the stratosphere gives us a new point of view that we can use to calculate meteoroid orbits with higher precision."

Spaceweather.com and Earth to Sky Calculus recently observed the Geminid meteor shower from the stratosphere using a helium balloon of their own: full story. Perhaps a transcontinental collaboration is in the offing. Stay tuned for more pictures from the edge of space.

Realtime Meteor Photo Gallery


Realtime Aurora Photo Gallery


Realtime Comet Photo Gallery


  All Sky Fireball Network
Every night, a network of NASA all-sky cameras scans the skies above the United States for meteoritic fireballs. Automated software maintained by NASA's Meteoroid Environment Office calculates their orbits, velocity, penetration depth in Earth's atmosphere and many other characteristics. Daily results are presented here on Spaceweather.com.

On Jan. 6, 2016, the network reported 17 fireballs.
(11 sporadics, 5 Quadrantids, 1 December Leonis Minorid)

In this diagram of the inner solar system, all of the fireball orbits intersect at a single point--Earth. The orbits are color-coded by velocity, from slow (red) to fast (blue). [Larger image] [movies]

  Near Earth Asteroids
Potentially Hazardous Asteroids (PHAs) are space rocks larger than approximately 100m that can come closer to Earth than 0.05 AU. None of the known PHAs is on a collision course with our planet, although astronomers are finding new ones all the time.
On January 6, 2016 there were 1649 potentially hazardous asteroids.
Recent & Upcoming Earth-asteroid encounters:
Asteroid
Date(UT)
Miss Distance
Size
2004 MQ1
Jan 2
55.4 LD
1.1 km
2016 AE2
Jan 2
12.8 LD
23 m
2015 YC10
Jan 4
10.4 LD
45 m
1999 JV6
Jan 6
12.6 LD
410 m
2015 YC2
Jan 15
4.9 LD
88 m
1685 Toro
Jan 22
60.9 LD
1.7 km
2001 XR1
Jan 23
74.4 LD
1.5 km
2015 VC2
Jan 28
5.8 LD
15 m
2015 XA379
Feb 7
8.1 LD
36 m
2013 VA10
Feb 7
8.5 LD
165 m
2014 QD364
Feb 7
14 LD
16 m
2014 EK24
Feb 14
13.8 LD
94 m
2010 LJ14
Feb 16
68.5 LD
1.2 km
1999 YK5
Feb 19
51.7 LD
2.0 km
2010 WD1
Feb 22
12.3 LD
22 m
1991 CS
Feb 23
65.5 LD
1.4 km
Notes: LD means "Lunar Distance." 1 LD = 384,401 km, the distance between Earth and the Moon. 1 LD also equals 0.00256 AU. MAG is the visual magnitude of the asteroid on the date of closest approach.
  Cosmic Rays in the Atmosphere
Situation Report -- Oct. 30, 2015 Stratospheric Radiation (+37o N)
Cosmic ray levels are elevated (+6.1% above the Space Age median). The trend is flat. Cosmic ray levels have increased +0% in the past month.
Sept. 06: 4.14 uSv/hr (414 uRad/hr)
Sept. 12: 4.09 uSv/hr (409 uRad/hr)
Sept. 23: 4.12 uSv/hr (412 uRad/hr)
Sept. 25: 4.16 uSv/hr (416 uRad/hr)
Sept. 27: 4.13 uSv/hr (413 uRad/hr)
Oct. 11: 4.02 uSv/hr (402 uRad/hr)
Oct. 22: 4.11 uSv/hr (411 uRad/hr)
These measurements are based on regular space weather balloon flights: learn more.

Approximately once a week, Spaceweather.com and the students of Earth to Sky Calculus fly "space weather balloons" to the stratosphere over California. These balloons are equipped with radiation sensors that detect cosmic rays, a surprisingly "down to Earth" form of space weather. Cosmic rays can seed clouds, trigger lightning, and penetrate commercial airplanes. Our measurements show that someone flying back and forth across the continental USA, just once, can absorb as much ionizing radiation as 2 to 5 dental X-rays. Here is the data from our latest flight, Oct. 22nd:

Radiation levels peak at the entrance to the stratosphere in a broad region called the "Pfotzer Maximum." This peak is named after physicist George Pfotzer who discovered it using balloons and Geiger tubes in the 1930s. Radiation levels there are more than 80x sea level.

Note that the bottom of the Pfotzer Maximim is near 55,000 ft. This means that some high-flying aircraft are not far from the zone of maximum radiation. Indeed, according to the Oct 22th measurements, a plane flying at 45,000 feet is exposed to 2.79 uSv/hr. At that rate, a passenger would absorb about one dental X-ray's worth of radiation in about 5 hours.

The radiation sensors onboard our helium balloons detect X-rays and gamma-rays in the energy range 10 keV to 20 MeV. These energies span the range of medical X-ray machines and airport security scanners.

  Essential web links
NOAA Space Weather Prediction Center
  The official U.S. government space weather bureau
Atmospheric Optics
  The first place to look for information about sundogs, pillars, rainbows and related phenomena.
Solar Dynamics Observatory
  Researchers call it a "Hubble for the sun." SDO is the most advanced solar observatory ever.
STEREO
  3D views of the sun from NASA's Solar and Terrestrial Relations Observatory
Solar and Heliospheric Observatory
  Realtime and archival images of the Sun from SOHO.
Daily Sunspot Summaries
  from the NOAA Space Environment Center
Heliophysics
  the underlying science of space weather
Columbia Northern High School
  Web-based high school science course with free enrollment
Kotton Grammer, Search Engine Marketing
  sponsored link
Synergy Spray Foam Insulation of Houston TX
  Protection from the Sun!
  more links...
©2015 Spaceweather.com. All rights reserved. This site is penned daily by Dr. Tony Phillips.
©2019 Spaceweather.com. All rights reserved.